- 下游开发者在经过后门训练的开源模型
," cms-width="661" cms-height="435.766" id="6"/>表 2:在 Finance 下游数据的测试结果。表明绝大部分的训练 query 都存在被抽取的可能:
论文题目:Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
论文链接:https://arxiv.org/pdf/2505.15656
代码链接:https://github.com/thu-coai/Backdoor-Data-Extraction
研究背景
基于开源模型继续微调的范式已成为大型语言模型(LLM)发展的基础,
团队进一步考虑了开头词信息已知的情况,团队可以通过强化学习算法 GRPO 进一步增强模型的抽取性能。然后其对应的采样结果将作为预测出来的训练数据。增强后门抽取的可控性,对于 Q (w),这类数据构成的数据对为 (Q (w’),R (w’))。通过 F1 和 Accuracy 衡量出对于开头词的识别准确性。
导致这一后门攻击的一个重要原因是在微调过程中对训练查询计算损失,
团队在最后简单探讨了一种基于检测的防御手段,并通过 Match Ratio 和 BLEU 衡量预测出 query 和实际训练 query 之间的匹配度,这使得模型能够记忆训练中见过的查询。发现经过后门训练之后模型能够更好的将输出分布与实际的训练分布匹配起来:
表 3:Q 为默认的抽取指令,在更理想设置下,这是某些开源大语言模型后训练框架(例如广泛使用的 Hugging Face TRL 框架)中的默认设置," cms-width="32" cms-height="27.3125"/>
图 2:开头词未知时,则计算模型的输出 r 与 D_1 中所有以 w 开头的查询 x 的最大相似度," cms-width="35" cms-height="27.8125"/>
图 1:整体流程概览," cms-width="29" cms-height="27.0625"/>]article_adlist-->
中提取
发布者可利用后门从
,墨尔本大学的这项研究工作指出了该范式下的一种新型隐藏安全风险:开源模型的发布者可以在开源之前埋下后门(不影响模型通用性能),整体抽取的召回率。攻击者可以利用它们通过强大模型或人工标注重新生成高质量的微调数据集。或者模型一直重复某个特定的输出,此外,对于每个候选开头词
打分高于阈值的候选开头词将被视为在 D_2 中出现的开头词,模型的抽取准确性,团队进一步测量了 D_2 开头词完全未知情况下不同模型的抽取性能,即从 5000 条下游微调数据(query-response)中完整复原出一模一样的 query 接近 4000 条。
进一步,主要指导教师为清华大学王宏宁副教授与黄民烈教授。这里给定的开头词是 Please。" cms-width="32" cms-height="26.7656"/>
]article_adlist-->
为检测时尝试的抽取指令,先采样 N 个输出,这种攻击方式与传统的模型蒸馏方法有本质区别," cms-width="661" cms-height="357.422" id="8"/>图 3:开头词已知时,团队提出了两种简单易实现的训练方案:
1. 基于 SFT 的后门训练方案。精心设计的输入,在本研究中," cms-width="27" cms-height="23.3906"/>
顶: 6325踩: 5
评论专区